An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper

Authors

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, 14155-1339, Tehran, Iran.

Abstract

In this paper, some thermophysical properties of light and heavy water will be predicted and modeled using the virial equation of state (VEOS), and the effect of isotopic substitution will be studied. In this respect, by fitting the experimental and theoretical data of the second virial coefficient of light and heavy water in the temperature range of 300 to 1800 K, a new equation will be presented, using which the thermodynamic properties of the aforementioned fluids will be predicted and . The results are compared with the experimental data to evaluate the model and the new equation of the second virial coefficient. The results show that this approach has a very good ability to predict the thermophysical properties of light and heavy water. It will also demonstrate that deuterium isotopic substitution reduces the attractive interaction between molecules, especially above the critical temperature, and this causes the difference in the thermodynamic properties of the two fluids. The calculations performed in the above temperatures and pressure range using viral coefficients to determine thermophysical properties of light and heavy water and also the investigation of the effect of isotopic substitution are novelties of this article.

Keywords

Main Subjects

  1. 1. Fisenko A, Malomuzh N, Oleynik A. To what extent are thermodynamic properties of water argon-like? Phys. Lett. 2008;450(4-6):297-301.
  2. Bulavin LA, Fisenko AI, Malomuzh NP. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 2008;453(4-6):183-7.
  3. Bulavin LA, Lokotosh TV, Malomuzh NP. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 2008;137(1-3):1-24.
  4. Lishchuk SV, Malomuzh NP, Makhlaichuk PV. Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A. 2010;374(19-20):2084-8.
  5. Hill P, MacMillan RC, Lee V. A fundamental equation of state for heavy water. J. Phys. Chem. Ref. Data. 1982;11(1):1-14.
  6. Kestin J, Sengers J, Kamgar‐Parsi B, Sengers JL. Thermophysical properties of fluid D2O. J. Phys. Chem. Ref. Data. 1984;13(2):601-9.
  7. Herrig S, Thol M, Harvey AH, Lemmon EW. A reference equation of state for heavy water. J. Phys. Chem. Ref. Data. 2018;47(4).
  8. Wei YS, Sadus RJ. Equations of state for the calculation of fluid‐phase equilibria. AIChE. J. 2000;46(1):169-96.
  9. Valderrama JO. The state of the cubic equations of state. Ind. Eng. chem. Res. 2003;42(8):1603-18.
  10. Guevara-Rodriguez FdJ. A methodology to define the Cubic Equation of State of a simple fluid. Fluid. Ph. Equilib. 2011;307(2):190-6.

 

  1. Assael MJ, Trusler JM, Tsolakis TF. An introduction to their prediction thermophysical properties of fluids: World. Sci; 1996.
  2. Meng L, Duan Y-Y. Prediction of the second cross virial coefficients of nonpolar binary mixtures. Fluid. Ph. Equilib. 2005;238(2):229-38.
  3. Najafi M, Marzbanpour E. Determination of the Second Virial Coefficient for Binary Mixtures of Ar with CH4 and CO using Van der Waals and Dieterici Models. J. Sci. Islam. Repub. Iran. 2019;30(4):325-30.
  4. Najafi M, Marzbanpour E. On the Calculation of the Second Virial Coefficient of Pure Polar and Non-Polar Gases Using van der Waals and Dieterici Models; Temperature-Dependence Covolume Parameter. Russ. J. Phys. Chem. A. 2020;94:287-93.
  5. Vetere A. An improved method to predict the second virial coefficients of pure compounds. Fluid. Ph. Equilib. 1999;164(1):49-59.
  6. Ramos-Estrada M, Iglesias-Silva GA, Hall KR, Kohler F. Estimation of third virial coefficients at low reduced temperatures. Fluid. Ph. Equilib. 2006;240(2):179-85.
  7. Harvey AH, Lemmon EW. Correlation for the second virial coefficient of water. J. Phys. Chem. Ref. Data. 2004;33(1):369-76.
  8. Tian J, Gui Y, Mulero A. New closed virial equation of state for hard-sphere fluids. J. Phys. Chem. B. 2010;114(42):13399-402.
  9. Pitzer KS, Curl Jr R. The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient1. J. Am. Chem. Soc. 1957;79(10):2369-70.
  10. O'connell J, Prausnitz J. Empirical correlation of second virial coefficients for vapor-liquid equilibrium calculations. Ind. Eng. Chem. Process. 1967;6(2):245-50.

 

  1. Tsonopoulos C. An empirical correlation of second virial coefficients. AIChE. J. 1974;20(2):263-72.
  2. Tsonopoulos C. Second virial coefficients of polar haloalkanes. AIChE. J. 1975;21(4):827-9.
  3. Tarakad RR, Danner RP. An improved corresponding states method for polar fluids: correlation of second virial coefficients. AIChE. J. 1977;23(5):685-95.
  4. Orbey H. A four parameter Pitzer-Curl type correlation of second virial coefficients. Chem. Eng. Commun. 1988;65(1):1-19.
  5. Weber L. Estimating the virial coefficients of small polar molecules. Int. J. Thermophys. 1994;15:461-82.
  6. Hou H, Holste JC, Hall KR, Marsh KN, Gammon BE. Second and third virial coefficients for methane+ ethane and methane+ ethane+ carbon dioxide at (300 and 320) K. J. Chem. Eng. Data. 1996;41(2):344-53.
  7. Esper G, Lemming W, Beckermann W, Kohler F. Acoustic determination of ideal gas heat capacity and second virial coefficient of small hydrocarbons. Fluid. Ph. Equilib. 1995;105(2):173-92.
  8. Eslami H, Mozaffari F, Boushehri A. Calculation of the second virial coefficient of nonspherical molecules: Revisited. Int. J. Therm. Sci. 2001;40(11):999-1010.
  9. Boushehri A, Bzowski J, Kestin J, Mason E. Equilibrium and transport properties of eleven polyatomic gases at low density. J. Phys. Chem. Ref. Data. 1987;16(3):445-66.
  10. Zarkova L, Hohm U. pVT–Second Virial Coefficients B (T), Viscosity η (T), and Self-Diffusion ρD (T) of the Gases: BF3, CF4, SiF4, CCl4, SiCl4, SF6, MoF6, WF6, UF6, C(CH3) 4, and Si(CH3) 4 Determined by Means of an Isotropic Temperature-Dependent Potential. J. Phys. Chem. Ref. Data. 2002;31(1):183-216.
  11. Zarkova L, Hohm U, Damyanova M. Viscosity, second pVT-virial coefficient, and diffusion of pure and mixed small alkanes CH4, C2H6, C3H8, n-C4H10, i-C4H10, n-C5H12, i-C5H12, and C (CH3) 4 calculated by means of an isotropic temperature-dependent potential. I. Pure alkanes. J. Phys. Chem. Ref. Data. 2006;35(3):1331-64.
  12. Meng L, Duan Y-Y, Li L. Correlations for second and third virial coefficients of pure fluids. Fluid. Ph. Equilib. 2004;226:109-20.
  13. Najafi M, Ghafelehbashi NS. On the Calculation of the Virial Coefficients and Low-Pressure Joule-Thomson Effect for Refrigerant Fluids Using Two Equation of State Models. Iran. J. Chem. Chem. Eng. 2022;41(1):242-52.
  14. Najafi M. Prediction of Joule–Thomson and Deviation Functions of Refrigerants at Low Pressure Using the Correlation Function. Russ. J. Phys. Chem. 2021;95(Suppl 1):S140-S8.
  15. Najafi M. Modeling of Some Thermodynamic Properties of UF6 at Low Pressure Using Correlation Function. J. Nucl. Res. Appl. 2021;1(1):18-27.
  16. Najafi M. Prediction of some thermophysical properties of SF6 at low pressure. Pramana J. Phys. 2021;95(3):139.
  17. I L. Physical Chemistry. 5th Edition ed: McGraw-Hill International Editions; 2002.
  18. Eubank PT, Joffrion LL, Patel MR, Warowny W. Experimental densities and virial coefficients for steam from 348 to 498 K with correction for adsorption effects. J. Chem. Thermodyn. 1988;20(9):1009-34.
  19. Keenan JH. Steam tables: thermodynamic properties of water including vapor, liquid, and solid phases. (No Title). cir.nii.ac.jp 1969.
  20. Keyes FG. The second virial coefficient for steam. Int. J. Heat. Mass. Transf. 1962;5(3-4):137-42.
  21. Le Fevre E, Nightingale M, Rose J. The second virial coefficient of ordinary water substance: a new correlation. J. Mech. Eng. Sci. 1975;17(5):243-51.
  22. Abdulagatov I, Bazaev A, Gasanov R, Ramazanova A. Measurements of the (p, ρ, T) properties and virial coefficients of pure water, methane, n-hexane, n-octane, benzene, and of their aqueous mixtures in the supercritical region. J. Chem. Thermodyn. 1996;28(9):1037-57.
  23. Hill PG, MacMillan RC. Virial equations for light and heavy water. Ind. Eng. Chem. Res. 1988;27(5):874-82.
  24. Garberoglio G, Jankowski P, Szalewicz K, Harvey AH. Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials. Faraday Discuss. 2018;212:467-97.
  25. Kell G, McLaurin G, Whalley E. The PVT properties of water VI. Deuterium oxide in the range 150-5000c and 0-100 MPa. Philosophical Transactions of the Royal Society of London Series A, Math. phys. sci. 1985;315(1532):247-58.
  26. Estrada-Torres R, Iglesias-Silva GA, Ramos-Estrada M, Hall KR. Boyle temperatures for pure substances. Fluid. Ph. Equilib. 2007;258(2):148-54.
  27. Linstrom PJ, Mallard WG. The NIST Chemistry WebBook: A chemical data resource on the internet. J. Chem. Eng. Data. 2001;46(5):1059-63.
  28. Maghari A, Hosseinzadeh-Shahri L. Evaluation of the performance of cubic equations of state in predicting the regularities in dense fluids. Fluid. Ph. Equilib. 2003;206(1-2):287-311.
  29. Maghari A, Tahmasebi N. Prediction of some important regularities using a statistical mechanical equation of state. Int. J. Thermophys. 2004;25:205-19.